Using a Theorem Prover to verify
the proofs of some simple theorems

in Mathematics

Stefan Dirnstorfer

May 9, 1997

Supervisor: Dr. Neil Speirs

Department of Computing Science

UNIVERSITY OF NEWCASTLE-UPON-TYNE

Acknowledgements

I would like to thank Dr. Neil Speirs for supervising this project.

Abstract

The Prototype Verification System PVS is a computer aided proof
checker built by SRI International Computer Science Laboratory. It provides
a powerfull specification language for axioms and theorems based on higher
order logic. The interactive proof checker allows the verification of a proof
such that logical correct deducing is garanteed.

This project uses PVS in order to formally verify some theorems in

geometry.

Keywords: PVS, Logic, Proof, Verifying, Geometry

Contents
1 Introduction

2 The specification language

2.1 Types e e e
2.2 Expressionso e e e e e
2.3 Theories

3 Specifying geometric axioms

3.1 Introducing the axioms.
3.2 Introducing the conjectures
3.3 Lobachevskian geometry L.
3.4 Consistency
3.5 Completeness

4 The proof checker

4.1 The proof sequence it e e e
4.2 Propositional rules 0oL Lo
4.3 Quantifierruleso oo
4.4 Proof strategies e

5 proofs on geometry

5.1 Line symmetry e
5.2 Segment is congruent toitself L L0000
5.3 The Segment as a intersection of rays
5.4 Dividing a Segment Lo
5.5 Remarks on theproofs 0.

6 Conclusion

6.1 Reflecting the practical work
6.2 Mathematical application
6.3 Outview L

12
13
14
15

16
17
18
19
20

22
22
23
23
24
26

A Specification
A.1 Hilberts axioms . .

A.2 Lobachevskian geometry L L.

B Proofs
B.1 Line symmetry . .

B.2 Segment self congruency Lo 0oL

B.3 Segment as intersection of rays L o0

B.4 Dividing a Segment

C Bibliography

30
30
32

34
34
35
38
49

111

1 Introduction

Checking and proving logical specifications is a well established branch of ar-
tificial intellegence. The work with exact matters in computer programming
or hardware design imposes a highly significant sensitivity to hidden logical
errors. Checking the correctness of these systems is a dounting task and often
beyond human capabilities. One promising approach is the use of the com-
puters precision itself to check given specifications. Although this branch of
artificial intelligence is not yet powerful enough to allow a computer to do the
whole work on its own, reasonable progress has been made in mechanizing logic
thinking.

The tool which was used in this project was the Prototype Verification System
PVS programmed by SRI International Computer Science Laboratory. PVS
provides its own specification language based on typed higher order logic cap-
able of expressing axioms and theorems using quantifiers, functions and logical
expressions. Finally PVS can help in finding propositions or theorems based
upon the axioms by providing powerful built-in simplification rules. Proofs
are conducted interactively. A series of commands have to be entered to lead
the computer the right way. Since each command allows only true deductions,
correctness is assured unless errors are made in the specification.

The practical part of this project was to examine the power of PVS in a math-
ematical application. The geometric world was chosen for specification and
proof checking as the practical part of this work for two main reasons. Firstly a
clear and simple set of axioms are available and a lot short proofs were already
carried out in this area. And secondly the possibility of visualizing the subject
and judging on the basis of a daily experience eases the work with abstract ex-
pressions that can be stated in a efficient and common representation available
to represent the objects used. (e.g. AB)

In order to carry out all the work a lot of technical details had to be learned.
The aim of this project is to show the general capabilities of this software and
the difficulties which are encountered without a detailed introduction into the
usage of the software. Since the basis of PVS has some similarities to program-
ming languages most features of the specification language will be explained in
relation to them. Understanding the fundamentals of logic and programming

is therefore essential for understanding of this dissertation.

2 The specification language

The specification of the geometric axioms and theorems is done in a language
especially designed for stating logical relations as they are used for mathemat-
ical modeling. All the topics discussed here are taken from manual “The PVS
Specification Language”[SOR93|. As idicated above the language of PVS in-
cludes many elements of sequential programming languages. The knowledge of
these principals is presumed in the following discussion.

Although the specification initially consists of plain ASCII code it is, in order
to increase readability, pretty printed using I¥TEX. Basically it is only a trans-
formation of predicate names like EXISTS and FORALL into their mathematical
notation 3 and V. Also the other symbols used are well known in mathemat-
ics and are introduced to ease the apprehension. For the needs of geometric
notation there are several symbols added to the standard configuration. For
example the function angle(A,B,C) is written as /ABC.

The programming environment of PVS is the emacs editor. Many commands

written in emacs lisp support the typing and specifying.

2.1 Types

Types are a common feature in most programming languages. Although they
imply stricter rules for programmer they enable a simple method of checking for
correctness. Many syntactic errors can be detected at an early stage without
conducting any calculations or proof attempts on the code. In PVS this type
checking has to be done before a proof attempt is started and gives information

about the correctness of the syntax within few seconds.

classical types

Like every other programming language PVS provides the basic types for whole
numbers (nat) or reals (real). Due to the different aims in programming and
logical specification it is not sufficient for PVS only to be supplied with rules
for the evaluation of calculations performed on these types. There must also be
an implementation of all the rules necessary to simplify expressions involving
variables of these types. The most essential rules are for example associativity

and commutativity. They are declared as axioms in a prelude file which is

loaded automatically and contains all kinds of useful definitions to be used
in further specification in PVS. However the fact that types for numbers are
specified in PVS language itself means that they are derived from a much more

basic type provided by PVS.

Abstract types

Abstract types are types where nothing about their behavior and properties is
assumed a priori apart from the assumption that the type is non-empty, i.e. a
variable of this type has at least one possible value. It is possible to specify
possible values for an abstract type and to declare the behavior of this type
in the context of certain functions in an axiomatic form. In the Geometry the
type “Point” is an abstract type. There is no formula given that creates a Point

instance from a set of coordinates.

Subtypes

Subtypes can be used to derive a new type from a parent type by selecting some
values of parent type to represent the new sub type. This can be compared to
limited form of inheritance in object oriented languages. A variable of a subtype
is always at the same time of its parent type, but not necessarily the other way
around. This type is represented by “FROM < ParentType >".

Very useful is the facility to leave sub types abstract. That means that there is
no way assumed to deduce if a variable is of a particular subtype. This can be
used to derive the type “Line” of the type “Shape”. Latter one represents an
arbitrary geometric object. Obviously there is no simply way to determine if
something is a straight line or not. Although you might have a very clear ima-
gination of what a line is, there is no straight forward way to define it logically.
It is still open to non-euclidian geometries to change the shapes considered to

be lines without touching the definitions made in the first place.

Functions and predicates

Although functions are used in basically all programming languages only a few
implement them consequently as types. This makes it possible to take functions

as arguments of functions which is the essential feature that makes the logical

specification of higher order. In the code a function type is represented as
“[<domain> — <range>|”.
The basic idea of a function in PVS differs in some way from the idea of sub-
programs. There is no concept of executing it as a procedure. It is simply a
mapping of a domain type onto a range type. Whereas in a program there
is a unique and straight forward performed way of simplifying or evaluating a
function you can choose it to go the other way around in PVS. If you have for
example a variable ¢ of type “Line” it can be useful to expand it to a function
that produces this line, e.g. ﬁ
Functions are used in this project to obtain variables of type “Line”, “Segment”,
“Ray” and “Angle” from a tuple of Points. It is worth mentioning that these
functions are, like their range types, defined to be abstract.
A certain type of function with boolean range, i.e. that return only true or false,
are termed predicates. The best known predicates are the quantifiers V and 3.
wou

A binary predicate used in geometry is congruence “=” which is a equivalence

relation on the set of shapes.

Sets

The set type is a sophisticated type predefined in the prelude file. It is intern-
ally represented as a predicate over a given type, that determines if a variable
is a member or not. Access to the set type can be performed through well
known functions €, C, etc. Since many geometric relations like “intersecting”
or “laying on” can easily expressed in term of set theory (U, €). The type
“set of points” underlies all geometric shapes. The identifier for this type is
“setof[Type]”.

The geometric type “Shape” is implemented as a set of Points. The complete
set of all Points is whole space, in this case the plane. All shapes are subsets

of this plane.

2.2 Expressions

The PVS language provides the standard set of expression constructs. There are
arithmetic and logic operators was well as IF-THEN-ELSE clauses. Expressions
yielding the type boolean are often referred to as propositions. They are used

to state relations between elements of the geometric world using the discussed

operators.

Binding expressions

A important class of predicates are those that generate a local scope for vari-
ables. Since geometric relations can only be expressed with reference to in-
stantiated variables basically all propositions bind their own variables. Most
commonly used are the quantifiers V and 3. The syntax for the V quantifier is
then:

V(z1,x2,...: Type): predicate(xi,za,...)

The variables x1,... are then locally valid within the body of the quantifier.

Set expressions

The specification itself does not explicitly refere to the internal representation
of sets as predicates. During the proof process sets are often reduced to their
original predicate form. Memberships A E<B_C>is expanded as <WZA)

One representation of predicates is similar to the mathematical construct for
sets which takes the following form: { x | predicate(x) }. This expression is
now a predicate itself which yields true for all x that satisfy the predicate. In
this case the result is predicate itself. The power of this construct is to bind
a variable and produce a predicate from a boolean expression. Reading the
set type as a predicate is exactly how this construct is used to define set in

mathematics. The intersection of two sets S; and Sa would then be { x | Si(x)
A Sa(z) }

2.3 Theorles

A specification covering axioms, theorems, Types and variables is combined
in a theory. A theory is comparable to a program or a library in a program-
ming language. This project includes two theories named “Hilbert” and “Lob-
achesky”. The assuming part, bounded with the keywords “ASSUMING” and
“ENDASSUMING”, contains the axioms and declarations. Outside the assum-
ing part theorems and conjectures are specified. The Hilbert theory for example
has an assuming part declaring the types (“Point”,...), the functions (W o)

and a series of axioms.

The types are declared at the beginning of the assuming part initiated with the
keyword “T'YPE”. The types can be left abstract or set equal to other types.
The functions are variables a function type. The function name is given the
type as stated behind the colon. After pretty printing this has a rather odd
form in the Hilbert theory (e.g. (ﬁj The arguments (P, P’ and P”) are
marked with function identifier (e.g. <»). The function type reveals what type
this identifier leads to (e.g. Line).

The axioms and conjectures have an identifier (e.g. “LineExists”) that al-
lows reference during proofs. The keywords used to declare assumptions are
“AXTIOM” and “POSTULATE” which are treated by PVS to be equivalent.
Conjectures are introduced with the keywords “LEMMA” or “THEOREM”.
There are many more keywords which have one of these two meanings. The
keyword is then followed by a boolean expression containing the assumed fact

or the conjecture to be proven.

3 Specifying geometric axioms

The basic concepts this specification was already discussed in the previous sec-
tion. In this section the emphasis is on the meaning of the logic expressions
stated in this work and why certain formulations are chosen. The axioms are
taken from the book “Foundations of Euclidean and non-Euclidean geometry”
[L.F83] Since the specification in the book were done in a human language a
not necessarily trivial translation into logic expressions had to be performed.

The axioms are taken from the so called Hilbert geometry. This axiom system
differs from Euclidean axioms in that it does not imply any statement on the
parallel axiom. This enables the possibility to extend the given axioms to
Euclidean and several non-geometries without losing any theorems proven in

Hilbert geometry.

3.1 Introducing the axioms

The following list explains the meaning of each axiom in the specification. The
axioms are listed below with reference to the original formulation in italic. Many

adaptions had to be made to meet the the specialty of the PVS language.

THE INCIDENCE AXIOMS

LineExists For every two points A, B there exists a line that contains each
of the points A,B. Actually the PVS specification does not only pronounce
the existence of the line. It implicitly defines that the abstract function line
generates exactly this line. A dilemma at this point is that if the two points are
equal what does the function ﬁproduce? In fact it is not specified which of
the infinite possible solutions is chosen. It would have been possible to define
line as a partial function such that only arguments different from each other
are allowed. But this would mean that one has to explicitly check every time

the line function is called if the two points are really different.

OnlyLine For every two points A, B there exists no more than one line that
contains each of the points A, B. Lines are often referred to as being the shortest
connection of two points. The definition of length it extremely difficult to
implement and depends on wether Euclidean or non-Kuclidean geometry is
used. At least it is possible to state that all “shortest connections” have to be

the same.

ThreeExist, TwoPointsOnLine There erists at least two points on a line.
There exist at least three point that do not lie on a line. This is the only axiom
that assures that there is more that one point in the plane. It would be easy to
satisfy all the axioms if the geometric plane contained only of one line or even
only one point. However since most of the theorems make statements over all
quantified points with certain properties the axiom “ThreeExist” is never used

in proofs included in this work.

THE ORDER AXIOMS

The original idea of calling three points being ordered as A-B-C is implemented
together with the definition of the segment. An ordering A-B-C is syntactically
equivalent to B lying on the segment AC but not being equal to A or B.

SegmentBounds The segment AB is defined as the set of all points P ordered
as A-P-B together with the points A and B. Therefore the membership of A
and B in the set AB has to be stated explicitly.

SegmentOnLine, SegmentSymmetry If a point B lies between a point A
and point C then the points A, B, C are three distinct points of a line, and
B also lies between C' and A The first part of this axioms is implemented as
the segment AB is a subset of the line AB. le. all points that lie on the
segment also lie on the line. The symmetry of the segment function is stated

as a separate axiom straight forward as AB equals BA.

SegmentExtension For two points A and C, there always exists at least one
point B on the line AC such that C lies between A and B. This axiom is called
“SegmentExtension” because is enables prolonging the segment to one side such

that the new segment contains the old one.

SegmentOrder Of any three points on a line there exists no more than one
that lies between the other two. The order relation in contrast to the definition
of the segment requires the points to be different from each other. This is
therefore explicitly stated in this axiom. Since the all quantified variables can
be instantiated in any order it is sufficient to deduce from one particular order

the invalidity of any other order.

TriangleIntersection Let A, B, C be three points that do not lie on a line,
and let £ be a line which does not meet any of the points A, B, C. If the line
passes through a point of segment AB, it also passes through a point of segment
AC or through a point of segment BC. This axiom is an interesting example of
over specification. In geometry the points A, B and C are supposed not to lie
on a line in order to construct a triangle. However it is obvious that the final
conclusion is also true if A, B, C lie on a line or are even equal to each other.
Abandoning the strict idea of a triangle lets us specify this axiom much more
succintly. If there is a point E in the intersection of the line ¢ and AB there
must also be a point D in the intersection of £ and either AC or BC. Moreover
it is important that if the line does not pass into the triangle via the points A

or B it does not pass out via them.

THE CONGRUENCE AXIOMS

CongruentSymmetry The symmetry of the congruence relation was not

stated explicitly as an axiom but at some points shapes were called congruent

10

to each other which implicitly defines this symmetry.

CongruentExtension If A, B are two points on a line a, and A’ is a point
on the same or on an other line a’ then it is always possible to find a point B’
on gwen side of the line o’ through A’ such that the segment AB is congruent
or equal to the segment A'B’. For the implementation of this axiom the points
A and B do not need to be specified explicitly. It is enough to make reference
to the segment s = AB constructed by these points. The point A’, the line a’
or a and the given direction are simply two points coded as A and R. The line
is then <E>eur1d the direction is the ray ﬁ The conclusion of this axiom is
then the existence of a point B such that AB is congruent to s and B lies on

the ray ﬁ

CongruentTransivity If a segment A’B" and a segment A"B" qare congruent
to the same segment AB, then the segment A' B is also congruent to the segment
A"B". This relation is obviously not only true for segments but for all kinds
of shapes. Therefore we can state the relation for three shapes s1,s2 and s3 as

follows: s; = s9 A 59 = s3 = 51 = s3.

CongruentCombination On the line a let AB and BC be two segments
which except for B have no points in common. Furthermore, on the same or
on another line d let A'B' and B'C" be two segments which except for B1 also
have no points in common In that case, if AB = A'B' and BC = B'C' then
AC = A'C" If two segments AB and BC on one line have only one point B in
common then this point must be a border point of both segments an B must
lie in between A and C so that the segments do not overlap. Therefore the

precondition can easily be specified as B € AC A B' € AC".

RayDef For two points A and B, the ray zﬁ 18 the set consisting of the points
of AB together with all points C such that A-B-C. This is just a definition of
the item “ray”. A ray jﬁ contains all points C on the segment AB and the
points C that extend this segment on the side of B such that B € AC.

AngleDef Let hk any two distinct rays emanating from O. The pair of rays
h, k is called an angle. For this project the representation for an angle is defined

by three points A,B and C. The angle is then union of the rays B—A> and B?

11

An Angle is often referred to as a number measuring its size. In pure geometry
an angle /ABC is just a shape in the form of a two rays emerging from B in
the directions A and C. Since all angles congruent to each other have the same
size 6 this can be used to measure angles. It can be shown that the sizes 6

satisfy all properties necessary to be represented by a subset of real numbers.

(e-g- [0,7])

CongruentAngle, OnlyCongruentAngle Let /(h,k) be an angle and d a
line and let a definite side of d be given. Let K be a ray on the line d that
emanates from the point (. Then there exists one and only one ray ¥ such that
the angle /(h,k) is congruent or equal to the angle /(K ,k') and at the same
time all interior points of the angle /(R k') lie on the given side of d'.

This axiom is split into two. The first states the existence of an congruent
angle the other one assures that only one congruent angle exists. In the first
axiom the four variables are bound. the angle « to which a congruent angle is
constructed containing the ray E The variable I determines the side of(ﬁ
on which the congruent angle is constructed. If T lies on 4B both sides are
possible. The variable D constructs the new angle ZABD that is congruent a.
The second axiom that two angles that are congruent to an angle o and contain
a given ray xﬁ are either equal or lie on different sides. If the points C and D
lie on different sides ofﬁthen the intersection of C'D with <Eﬁs not empty.

CongruentTriAngle If for two triangles AABC and AA'B'C' the congru-
ences AB= A'B', AC = A/C" and /BAC = /B'A'C’ hold, then the congruence
LABC =2 A'B'C' is also satisfied. The implementation of that is trivial. Primes

had to be changed to indices.

3.2 Introducing the conjectures

LineSym This lemma confirms that the arguments for the line function can
be given in any order, i.e. AB=BA. The necessity of this lemma arises from the
required order of the arguments of the line function. In the original axioms the
line is defined through two points without emphasis on their order. The truth
of this axiom is therefore essential for the correctness of the implementation as
a function in PVS. If this did not conclude from the axioms it would have to

be specified as an axiom.

12

SegmentSelfCongruent Fvery segment is congruent to itself. Since trans-
itivity and commutativity are given axioms this theorem concludes that con-

gruence is an equivalence relation.

SegmentFromRay The two rays fﬁ and 37 lie in one line have a non
empty intersection. This intersection is the segment AB. This theorem states
the equality of two sets and makes therefore propositions for every member of
the set which makes this theorem much more complicated for PVS than it looks

on the first inspection.

SegmentDivision Given distinct points A and C, there exists a point D such
that A-D-C. This is the first non-trivial theorem. It says that between every

two non-equal points lies another one.

NonCongruence It can not be proven with PVS that there are Shapes that
are not congruent to each other. This is discussed in the section about com-

pleteness.

3.3 Lobachevskian geometry

In mathematics it is most important that different theories can build upon each
other. In PVS theories can be imported using the “IMPORT”. Symmetrically
the “EXPORT?” clause allows control over the definitions in one theory that can
be accessed by other theories. PVS keeps track of different files within one so
called context which imposes good support for big theories consisting of several
files.

This feature is demonstrated in the specification of Lobacheskian geometry

which is a non-Euclidean extension of the Hilbert axioms.

Parallel postulate The Parallel postulate defines the existence of non inter-
secting straight lines. The adjective “parallel” actually has a different meaning
than just not intersecting. Whereas in Kuclidean geometry there is only one
non intersecting line passing through a certain point there are at least two of

them in Lobachevskian geometry.

13

InteriorDef This axioms defines the predicate “interior”. We need this for
the actual definition of the predicate parallel (]|). For a point P and an angle
/ ABC this is defined as laying on the same side as C of the line AB and laying
on the same side as A of the line BC. Laying on the same side of lines means

beeing connect-able without crossing that line.

ParallelRay We shall call ray ﬁ parallel to ray Q? if they do not meet,
and if every ray interior to /RPQ meets Q? For the parallelism of rays a so
called angle criterion has to be satisfied and the are not allowed to intersect.
The angle criterion for two rays ﬁ and Q?says that every ray interior to the
angle /ZRP(Q intersects the ray Q?

ParallelLine Line BB’ is parallel to line AA" (in the direction @) if the
following two conditions are met:

a. BB does not meet AA"

b. for some P onWand Q onm any ray interior to / (opening in the
direction of paralleism) will meet Q_A>'

The definition of parallelism for lines consists of to parts. First as in Euclidean
geometry parallel lines are not allowed to intersect. Second the angle criterion
has to be satisfied in the direction of parallelism. The definition of parallel
lines distingueshes between the two lines that do not meet a given line and go

through a given point.

ParallelSymmetry It is not trivial to see that parallelism is actually a sym-

metric relation.

3.4 Consistency

A system of axioms is called consistent if it does not produce any wrong pro-
positions. This does not necessarily exclude that putatively meaningless results
can be obtained. With the specified axioms all kind of propositions on lines of
the kind <ﬂ%ould be proven. Testing the consistency of a system of axioms
and testing producability of chosen theorems is therefore associated with each
other.

The only error source for the results worked out with PVS is, correct imple-

mentation of PVS itself provided, the human. Since logical specification has

14

still to be translated from sentences in human or programming language many
mistakes can be made here. The geometric axioms are at least a few centuries
old and it is pretty reasonable to assume them to be consistent. But translation

into the specification language is still not completely determined.

How to find inconsitencies

As indicated above testing consistency is conducted by trying to deduce correct
theorems. It is practically impossible to prove the non deductibility of wrong
theorems. It is not sufficient to just check wether correct theorems conclude
or not. Assume there was an axiom that by a spelling mistake simplifies to
FALSE. Every theorem could be proven within seconds. In this simple case
this would become obvious after the first proof. But the error can be hidden
in some much trickier way and it always necessary to understand roughly how
the result was produced. If correct theorems can not be deduced as expected or
are deduced in an unexpected way some concern about the correctness of the
axioms has to arise. If the specified area is something where correctness can
not already be taken for granted there is always a possibility that the specified
object itself has some inconsistencies. This is one of the main application of an

interactive prover.

Possible mistakes

Apart from spelling mistakes implicit definitions of properties are a big source
of errors. For example the congruence of s; and sg to each other is implicitly
defines commutativity and it is easy to forget this. If this relation holds between
each other there is no order like s1 & s or so = s1. But of course in PVS you
have to give the arguments of the predicate in a certain order. Another tricky
point is the possible equality of instantiated variables. Most of the geometric
axioms require the involved points to be different from each other. These stat-
ings of inequality are most of the time obvious anyway but space consuming to

specify. Therefore they are in their orignal form often stated implicitly.

3.5 Completeness

The set of geometric axioms can be called complete if it deduces every true

proposition about geometry within a finite number of steps. A theorem that

15

can not be deduced from the specified axioms is bound to be false. In fact
it is impossible to achieve completeness in higher order logic. Many aspects
are left open deliberately to allow the Hilbert axioms to be a basis for Euclid,
non-Kuclidean and spherical geometry.

Taking the specified Hilberts axioms incompleteness is easy to see. The congru-
ence relation (&) for instance is incomplete. It is meaningful to apply it to all
kind of shapes and is therefore defined as a predicate of two arguments of type
“Shape”. But it is only specified for segments and angles. Another example is
definition of a ray or a segment itself. Every ray that can be produced, using the
defined functions, as definitely an origin and a direction. It is not clear wether
any instantiation of type ray has this property. In fact, one to one translation
of the definition from the book makes this not absolutely clear either. Since
only rays instantiated by the ray function (ﬁ') are used, this does no harm
to the consistency of the axioms.

There are no rules that conclude the absence of a positively defined property.
The non congruence of two shapes can not be deduced from the existing ax-
ioms. Even a new axiom stating the congruence of all Shapes to each other
would be in no way a contradiction to the existing axioms. In mathematics
the non congruence of two segments is concluded from the inability to deduce
the congruence from a complete set of axioms. PVS does not provide any tools
to exclude the deductibility of a theorem. Every proposition has an unclear
validity until it is proven to be true. In other words it is impossible to deduce
the non congruence of two arbitrary shapes from the specified axioms. The

Theorem NonCongruence is an example of that.

4 'The proof checker

Once all the axioms and theorems are specified one wants to verify their cor-
rectness. PVS assists the user to deduce the specified theorems from the given
set of axioms. All the commands described in this section are taken from “The
PVS Proof Checker: A Reference Manual”[NSR93].

The interactive proof checker can be started from editing environment. The
proof checker displays a so called proof sequence containing known facts and
unproven theorems. Certain operations can be performed on the sequence by

typing interactive prover commands at every step. The goal is to simplify this

16

sequence until the truth of the theorems can be deduced trivially.

A IX¥TEXpretty printer transforms the stated commands and the changing proof
sequence into a readable form which is free of the cryptic code typed in the
first place. Since the whole sequence is rewritten at every step the proofs can
become incredibly long. Four proofs contained in this project are printed on
eighty pages. In the appendix four pages are printed on one page in order to
save paper.

A notable point is that for some odd reason in the pretty printer for the proofs
sometimes writes primes as !1. L.e. the variable A’ degenerates to A!'1. This is

non pretty printed form that has to be typed into the proofer environment.

4.1 The proof sequence

The proof sequence is a list of propositions consisting of an antecedence and
a consequence. The following figure shows the representation of this sequence.
The propositions of the antecedence are negatively numbered and the con-

sequence is positively numbered.

{-1} A
-3} A
-3} As
{1} B
{2} B
{3} Bs

For short it is written within floating text as Aj, A2, A3 F By, Bo, Bs. The

interpretation of this sequence is:
(Al /\Ag/\Ag) = (Bl \/BQ\/Bg) (1)

All the the transformings on a sequence can be derived logically from this
relation. When a proof is started the sequence has an empty antecedence and
a consequence consisting of the theorem which has to be proven. Showing the
truth of this theorem is equivalent with showing the truth of the sequence. This
is the ultimate goal that terminates the session with the interactive prover.

The proof sequence is the node of a proof tree. Each node represents a subgoal

17

towards the final proof. During the session axioms and proven theorems can be
added to the antecedence, causing the sequence to grow. Many other rules can
be applied to simplify the sequence. Once a sequence is proven it disappears

from the proof tree. As soon as all nodes are proven the proving process is

finished.

4.2 Propositional rules
Splitting

The normalization process of a sequence may require a splitting into one or
more subgoals. The distributive law for the logic operators V and A allows the
following three possible ways of splitting into two subgoals which have to be

proven separately.

1. THFAAB yields T'HFA and T'F B
2. AVBFT yields AFT and BFT
3. A= BFTIl yields BFI and FA,T

whereas I' is a set of propositions in the antecedence or consequence.

Splitting can also be achieved by case analysis. A sequence can be split into

two, one with a given proposition “A” to be true and one with “A” to be false.

3. THFA yields AATHFA and TFAA

Splitting copies the majority of propositions unchanged into the new subgoals.
Possible simplifications of these may then have to be transformed in every single
subgoal in exactly the same way. It is advisable to apply splitting at the latest
possible stage.

Flattening

The associativity law implies the following rule two split a single propositions

within a sequence.

1. THFAVB yields T'HA,B
2. AANBFT yields A,BFT

18

Propositional axioms

The propositional axioms recognize the truth of a sequence. It is therefore the
goal of all the other commands to generate a sequence that can be proven by

the propositional normalization rules that have the following form:

1. ...,FALSE,... F
2 - ..., TRUE, ...
3. ... Foot=1t, ...
4. A, ... oA,

Taking into account relation (1) these rules are obviously true. These rules are,

if possible, applied automatically at every step during the session.

NOT-simplification

One mentionable simplification rule that is applied automatically at every step

which which follows directly from (1).
., A, ...F...is equivalent to ...F A, ...
and of course

F...,—A, ...is equivalent to A, ...F A, ...

Proof by contradiction This result lifts in some way the syntactic distinc-
tion between antecedence and consequence since propositions can easily move
from one side to the other. This is known to mathematicians as proof by contra-
diction where the theorem to prove is just negated and taken as a pre-condition.
The contradiction is produced when the pre-condition together with the neg-
ated theorem simplifies to FALSE. This is a valid proof in PVS according to

the propositional axiom number 1.

4.3 Quantifier rules

The Quantifier rules are comparatively sophisticated and the most crucial ones
in simplifying the proof sequence. Skolemizing and instantiating removes a

quantifier meeting certain requirements.

19

Skolemizing

If it is known that there exists a variable that satisfies a existentially quantified
proposition you can give it a universal name that is then known throughout
the hole sequence. A existential quantifier in the antecedence or a universal
quantifier in consequence can be omitted in a certain way (note that Vo : A
in the consequence is 3z : = A in the antecedence). If the a proposition in the
antecedence has the form Jzq,...,x, : A whereas the variables z; to x, have

to be replaced by unique constants, cj...co, written as Alci/@1,...,cn/Ty].

Skolemizing A#A One weird thing happens when the new unique constant
is used to bind a variable within the proposition A. For example if “VB :
dA : A # B” is skolemized with the variable A, which not universally bound,
you will get “dA : A # A”. This looks like a contradiction but in fact it is
not because there are two variables called “A” that are distinguished in their
internal representation.

In order to avoid this problem you can use primes for the skolemizing constants.

The formula above would then be 3A : A # B’

Instantiating

Similar to the way of skolemizing you can lift universal quantifiers in the ante-
cedence and existential quantifiers in the consequence. If a universal constant
was produced by skolemizing it can be instantiated in a formula than yields a
truth for all its possible instantiations. The formula “Vz1,..2, : A” can there-
fore be rewritten as “Alcy/x1,..,cn/xy)|” where c1 to ¢, are universal constants.
If for example g and h are globally known variables of type Shape the pro-

~

position “V(s1,s2 : Shape) : s1 $9” can be instantiated with the g and h.
According to order this yields either “g = h” or “h = ¢”. Although both are
correct deductions you have to decide for one. Choosing the right order for the
instantiation is often most difficult part of the proof where some insight into

the meaning of the axioms is needed.

4.4 Proof strategies

The simplification of the proof sequence often involves the straight forward ap-

plication of the discussed low level rules. The PVS prover provides so called

20

proof strategies which try to apply to low level rules repeatedly. Especially in
long proof sequences these strategies can be a big advantage. As a disadvantage
they often do not choose the most efficient way to simplify the sequence. Typ-
ically is a splitting into an abundance of subgoals and making inappropriate
instantiations of of bound variables. Using the strategies is sometimes a bit of
a gamble and has often to be followed by the undo command.

The following paragraphs list certain strategies by the name they are invoked
with. In the pretty printed form these commands are described by a proper
English sentence. This section just gives some background information about

what has actually to be typed to achieve the results in the geometric proofs.

skolem! All of the discussed proofs start with a universal quantification in
the consequence. Skolemization is therefore always one of the very first steps.
The skolem! command skolemizes all propositions in the sequence and tries to

skolemize them. It also generates new variable names automatically.

inst? Nearly all axioms are universally quantified. Since they are introduced
into the antecedence their bound variables have to instantiated. The inst?
command tries to instantiate universal variables. There is no unique way to do
that and only the wrong order of instantiation can spoil the proof. This rule is

therefore not suitable to handle tricky situations.

replacex This scans the proof antecedence for equalities and uses them to
replace every occurrence of the left hand side with its right hand side. Every
other boolean expression A in the sequence is treated as the equality A =
TRUE. The application of this rule is pretty printed as “Repeatedly applying

the replace rule”. Sometimes the equalities that are used are specified explicitly.

ground This command involves splitting flattening and exploiting equalities.
The pretty printer states it as “Applying propositional simplification and de-
cision procedures”. It is in fact a very useful strategy. Many subgoals are
finished on this command. This command also leads often to repeated splitting
of a sequence. If the subgoals can not be proven by the ground command itself
an abundance of subgoals remains. In this case clarity is often lost and other

simplifications have to be done in every single subgoal. Sometimes splitting can

21

be avoided by hiding a proposition in a sequence such that the ground command

does not take it into account.

grind This command does repeated skolemization and instantiation and tries
to simplify the gained formulas. This is pretty printed as “Trying repeated
skolemization, instantiation, and if-lifting”. This is a very powerful command
and can often perform whole proofs on its own after the required lemmas are
appended to proof sequence. In particular set expressions often reduce very
quickly to basic logical expression which can be proved by simple rules. Since it
is bases on the inst? and ground strategy discussed above, sometimes correct

instantiation has to be done by hand.

5 proofs on geometry

In this section the application of the prover is discussed. Three simple geometric
theorems are deduced from the specified axioms. The two proofs “SegmentSelf-
Congruent” and “SegmentDivision” are copied from the book “Foundations of
Euclidean and non-Euclidean geometry”[L.F83]. The proofs as they are prin-
ted in the appendix have gone through several unsuccessful attempts are now
revised to relatively (1) short and readable. Not all commands occuring in
the proofs have been discussed yet. The pretty printer referes to them with

sentences that make the steps, like hiding and deleting, self-explanatory.
5.1 Line symmetry

— —
V(A,B : Point) :AB=BA

This theorem expresses the symmetry of the definition of the line. The line
through A and B (ﬁ contains the same Points as the line through B and
A (m The axiom we need here is obviously OnlyLine because the two
lines contain two equal points. The axiom LineExists proposes the fact that
a line contains the Points that construct the line. After appending these two
lemmas to the antecedence the grind command skolemizes and instantiates
the two quantified propositions in the sequence. Since the the order in which
the variable A’ and B’ are instantiated in theorems does not really matter this

works fine. The proofs is finished.

22

5.2 Segment is congruent to itself

V(A,B : Point) : AB= BA
To prove that a segment is congruent to itself we generate a new segment that
is congruent to given segment AB and apply the transitivity of the congruence
relation. The new segment that is congruent to the initial one can exists due to
the CongruentExtension axiom. This axiom has to be instantiated with the
segment A’B’ for the bounded variable s of type Segment. This is quite obvious
to the human but since a new function to generate the segment A’B’ has to be
introduced this is a step where automatized instantiation does not work. The
variable used to instantiate A and R are completely arbitrary because there is
no preference where this new congruent segment lies in space. After this step
the new variable C' can be instantiated to produce the segment A’C’ that is
congruent to A’B’. Now the axiom CongruentTransivity can be included
to the sequence. After instantiating and simplifying the result is more or less
there. The only thing is that the congruence relation in the antecedence and
the consequence are symmetric. The symmetry of this relation is defined in the
axiom CongruentSymmetry. After applying this axiom the proof sequence

is simplified straight forwards.
5.3 The Segment as a intersection of rays

= =
V(A,B: Point): A# B= AB=ABN BA

This theorem concludes basically from the fact that three points are ordered.
Therefore every point x is ordered either x-A-B or A-x-B or A-B-x. Since only
the points ordered A-x-B lie on both rays the intersection is the segment. The
problem here is to bind a new variable x. This binding is done by introducing
a predefined axiom with a command called extensionality. This new axiom
stated in some way that every set that contains the same points is equal. The
two shapes that have to equal are instantiated with A’B’ and (m’um’).
After simplification and skolemizing the theorem reads now a point x is in
the segment if and only if x is also a member of the the intersection of rays.
Now a series of axioms have to appended to the sequence. First as discussed

the axiom SegmentOrder instantiated to assume the order A-x-B. Then the

23

axiom RayDef has to be instantiated two times for the two rays ﬁ’ and B—'}l'.
The next axiom is SegmentSymmetry to solve problems that would arise from
two symmetrically specified segments in the ray definitions. The proof sequence
can now be simplified with the proof command flatten. The more powerful
command ground for example would at this point generate 18 subgoals. More
advisable is splitting the sequence with case analysis into two subgoals. The
first subgoal assumes that x lies one the segment A’B’. This sequence can then
be proven with the command grind. The second subgoal reduces considerably
after applying # ¢ A’B’. The contradiction that is visible at this point is:
B' € A’z and A’ € B'z. Therefore the axiom SegmentOrder has to be
included again. This time the axiom should conclude from an existsing order
A’-B'-x. After simplifying a formula in the antecedence and in the consequence
make the same proposition on symmetric declaration of the segment. Therefore

SegmentSymmetry has to be applied and the proof is finished.

5.4 Dividing a Segment

V(A,C : Point): A# C = 3(D : Point): D#AAND#CADE€EAB

The original form of this proof has the length of one paragraph. With PVS it is
extended to several pages. This proof demonstrates the difficulties of translating
proofs that are readable to humans into PVS.

The basic proof idea works as follows. Let the two points be skolemized as A’

. . Ry 14 . .

and C'. Now E is a point not on the line A’C’. The axiom SegmentExtension
generates the point F on line A’E. The same axiom the generates the point
G on line F'C'. Now the line EG hits the triangle in E and must due to
TriangleIntersection hit the triangle a second time in E' on A'C’ or F(C'.
The later segment can be excluded because the line EG is different from FG.

QED.

24

G

The proof with the PVS proof checker starts skolemizing the theorem and in-
stantiating the points line Win the axiom ThreePoints. The new point
is skolemized as E. The the axiom SegmentExtension is instantiated twice.
First with A’ and E to generate F and then with F and ' to generate G.
Now the axiom the axiom TriangleIntersection is applied and instantiated
according to the line <m>hitti11g the triangle A’/FC’. In order to skolemize the

variable E’ this axiom has to be split the sequence into two subgoals.

1) proposition -1 proposes the existence of the searched point E’. This point
can be skolemized and instantiated into the theorem. Using a powerful simpli-
fication command like grind here produces an abundance of subgoals which can
hardly be proofed. In order to stay near the original proof were case analysis
on E’¢ A'C" or E’€ FC" is required the other split-able propositions have to be
hidden. After that splitting evolves two new subgoals.

1.1) This subgoal is generated to proof that if E' lies on A’C’ it does not
hit the border in Point A’ or C'. E’ # A’ is already known in the sequence.
Therefore the requirement simplifies to E’ # C’. To prove this it has to be

shown that the lines GC”, FE, EG, A'F and FG are equal to each other. Two

lines are equal if they share at least two points. The OnlyLine axiom has
to be instantiated for all these lines. To meet the requirements of this axiom
LineExists has to be applied to all these lines and the axiom SegmentOnLine

to the two segments F'G and A'F.

1.2) This subgoal proves that E' cannot lie on F'C’. Here case splitting on
E' = @G is required.

25

1.2.1) In this case E’ is equal G. This can not be because after replacing all
occurrences of E' with G two contradicting conditions remain. The Points F,G
and C' are said to be order such that G € FC" and C' € FG at the same time.
The axiom SegmentOrder reduces this statement to C' = F'. After replacing
the occurrences of F with C’ the SegmentOnline produces that the E that
lies on the segment A’C” also lies on line line W Simplifying concludes the

proof of this subgoal.

pi

1.2.2) This is the second case of the case analysis. Here E’ is now proven

to be not equal to G. This case works like 1.1. Here the lines (FG, \FC’i FE'i

EG, E'G, EF, A'C" and A'F are equal. The proof of this is very similar and

contains mainly instantiating OnlyLine, SegmentOnLine and LineExists.

2) The subgoal number two was generated at the beginning. Here it has

to be shown that the line £G has a common point with the line A’F. This

common point is obviously the point E. Instantiating and simplifying yields
—

three subgoals that have propositions of the form E € £G in it. All these three

subgoals can therefore be proven by instantiating the axiom LineExists.

5.5 Remarks on the proofs

Finding proofs

In all four proofs the general idea of how to proof the theorem was already there.
None of these ideas were found by any of the proof strategies. At least the
right axioms had to be applied and most of time instantiated correctly. Using
simplification procedures at an early stage nearly always spoiled the proof.

The only proof with some mathematical relevance is the proof SegmentDi-
vision. It could only be completed because it was kept in absolutely parallel
to original proof idea. In my first attempts I used, immediatly after entering
the basic proof idea, powerful simplification commands like grind. As soon
as the sequence is split into a series of subgoals by automatized prover com-
mands the clarity about what is going on geometrically is mostly lost. Since the
NOT simplification rule allows propositions to move from the antecedence to
the consequence and vice versa there is no unique geometric interpretation of a

sequence and only few of them promise a working proof idea. Without geomet-

26

ric imagination I can see no way to produce reasonable results. For instance
the idea of showing the equality of this series of lines in step 1.2.2 involves
fourteen different instantiations of three different axioms before obtaining the
required results. Nobody can calculate so many steps in advance relying on the
abstractly stated axioms alone. Taking into account the thousands of other pos-
sible instantiations a automatic brute force trial and error algorithm is bound
to fail. Only the very last steps or simple subgoals like those produced from
subgoal .2 could be simplified by looking at the syntax of the formulas only.
By and large the computer is no help in finding geometrical or mathematical

proofs of this kind.

Checking proofs

Another important task that PVS is designed for is proof checking. The original
proof of the segment division is one paragraph long and can be fully understood
within a few minutes. The remaining questions are how thoroughly does one
really check all the special cases and how unambiguous are the proofs without
making use of previous knowledge of geometric interpretation.

Both questions are hard to tell. Although all special cases arising in the proof
are immediately clear after drawing a small sketch, there is always a risk of
forgetting about one. Proofs often refer to sketches that visualize the problem
but can also mislead or suggest facts that are not specified. Using PVS is not
a very efficient way but lets one be definitely sure that the proof is correct.
There is some demand for mathematical proof checking. Often proofs of math-
ematical theorems, e.g. Fermats last theorem, are found. These proofs can be
so complicated that they have to be checked by several mathematicians inde-
pendently. Even then a slight chance of an error remains. Using mechanized
proof checking would be very welcomed. The discouraging length of the simple
geometric proofs makes this a very unlikely application of PVS. Checking math-
ematical proofs by humans, like Euclids theorems are checked by thousands, will

continue to be the favored way.

27

6 Conclusion

6.1 Reflecting the practical work

Comparing the number of pages of specification and proofs it gives a ratio of
four to nearly eighty. Although the proofs contain a considerably high amount
of computer generated rewriting of theorems it still represents roughly the ratio
of difficulties faced at each stage. The thing that attracts attention is that few
pages of specification allow a compact stating of the geometric axioms together
with even the foundation of a non-Euclidean geometry whereas at the same
time a massive pile of pages containing the proofs just reveal the most obvious
geometric results. One reason for this is that the similarity of specifying and
programming makes the learning of the new language relatively easy. The basis
of the interactive prover environment as well as the prover commands dealing
with elementary logic are rather unknown in other areas of computer science.
But this was probably not the only reason why little headway was made with
the proofs. The original proofs are extremely short and simple, but they pretty
often refer to facts that are only obvious to human imagination. The powerful
simplification rules of PVS were not able to grant sufficient compensation for
that.

A positive result of the proof checking process is that an abundance of errors in
the first specification were found. It is especially difficult to specify geometric
axioms logically since much reference to imagination was made. By and large
the small number of successful and unsuccessful proofs revealed big number
of mistakes in the specification. Projecting this success to some important
specification where incorrectness would cause severe troubles, proof checking
can decrease uncertainty considerably. Since many other error sources still
remain, the geometric as well as any other PVS checked specifications, are far

from proven to be correct.

6.2 Mathematical application

In mathematics one is generally less interested in checking the consistency of
axioms but rather in detecting and proof checking of new theorems. This de-
mand does not coincide with the advantages of PVS that were discovered in

this project. Proof checking turned out to be relatively hard but gave insight

28

into the properties and consistency of the axiom system.

Strict implementation of mathematical relations as functions with ordered ar-
guments leads to relatively complicated definitions. The symmetry of certain
relation or the irrelevance of the order of arguments in the line function have
to be stated as extra axioms or explicitly derived as a lemma. The proofs in
this project spend a great part of steps on proofing trivialities like A € ﬁ
Introducing more powerful simplification rules that scan the proof sequence and
simplify these kind of trivialities would reduce the length of these proofs at least
to half size. Programming new rules for PVS is very complex compared to the
PVS specification language and is therefore no appropriate way to investigate
various mathematical disciplines.

Since mathematics underlies most specifications a mathematical proofs will play
an important role in the future of PVS. More theorems in well known mathem-

atical areas will be carried out and allow future works to build upon them.

6.3 Outview

There are definitely a lot of logical problems which require a great deal of stand-
ard simplifications without insight into the meaning of the specifications. The
advantage of the computer is not to reduce its performace with growing length
of the sequence. Many definitions expand to a huge list of simple proposition.
For example the expansion of the function “intersection” usually leads to a
much longer sequence. When the human loses clarity PVS can still find simple
logical properties that simplify the sequence or even prove it. The current state
of PVS is from this perspective an encouraging approach. And there are a lot
of improvements under way.

PVS is already powerful enough for commercial application. The presentation
of a computer generated proof will increase reliability of a designed system
considerably. As proof checker become more powerful, proof checking might
become an essential requirement for every planed system in the near future.

A mathematical application of PVS or similar proof checkers is quite unlikely in
the near future since limitations in current artificial intelligence will also confine

the further future of PVS.

29

C Bibliography

References

[L.F83] Richard L.Faber. Foundation Of Euclidic And Non-Euclidic Geo-
metry. Marcel Dekker, Inc., New York and Basel, 1983.

[NSR93] S. Owre N. Shankar and J.M. Rushby. The Proof Checker: A Refer-
ence Manual. Computer Science Laboratory SRI International, Menlo

Park CA 94025, beta release edition, march 1993.

. Shankar S. Owre and J.M. Rushby. e pecification Lan-
SOR93] N. Shankar S. O d J.M. Rushby. The PVS Spect jon L
guage. Computer Science Laboratory SRI International, Menlo Park

CA 94025, beta release edition, June 1993.

111

