Representing Portfolios

On the representation of trading strategies and financial portfolios

Stefan Dirnstorfer

Technical University Munich

2004-Dec-13

All trading strategies and financial products can be described in terms of three operators.

List of operators

Initial values

An inactive time step

Transaction of one unit onto account c

 T_c Transaction of O_1 Decision between option O_1 and O_2 Final valuation

All trading strategies and financial products can be described in terms of three operators.

List of operators

Initial values

An inactive time step

Transaction of one unit onto account c

 T_c Transaction of O_1 Decision between option O_1 and O_2 Final valuation

All trading strategies and financial products can be described in terms of three operators.

List of operators Initial values An inactive time step Transaction or one O_1 Decision between option O_1 and O_2 Final valuation Transaction of one unit onto account c

All trading strategies and financial products can be described in terms of three operators.

List of operators

Θ

 $T_c^{\mathbf{n}}$

Initial values

An inactive time step

Transaction of **n units** onto account *c*

Decision between option O_1 and O_2

Final valuation

All trading strategies and financial products can be described in terms of three operators.

List of operators

Initial values

An inactive time step

Transaction of one unit onto account c

An mac.

Transaction of one unit of the contraction of one unit of the contraction O_1 and O_2 .

Final valuation

A multiperiod strategy can be written by a chronologically ordered operator sequence.

$$T_c^{-90} \ominus T_c^{100}$$

Read:

- 1 Withdraw 90 from account c
- Wait one period
- 3 receive 100

Mathematica Code:

A multiperiod strategy can be written by a chronologically ordered operator sequence.

$$T_c^{-90} \ominus T_c^{100}$$

Read:

- 1 Withdraw 90 from account c
- Wait one period
- 3 receive 100

Mathematica Code:

A multiperiod strategy can be written by a chronologically ordered operator sequence.

$$T_c^{-90} \ominus T_c^{100}$$

Read:

- 1 Withdraw 90 from account c
- 2 Wait one period
- 3 receive 100

Mathematica Code:

A multiperiod strategy can be written by a chronologically ordered operator sequence.

$$T_c^{-90} \ominus T_c^{100}$$

Read:

- 1 Withdraw 90 from account c
- Wait one period
- 3 receive 100

Mathematica Code:

Repeated actions can be denoted by the operator power.

$$\left(\Theta T_c^r\right)^M T_c^{100}$$

The operator term reads chronologically from left to right. The term in parenthesis is repeated *M* times.

Mathematica code

Repeated actions can be denoted by the operator power.

$$\left(\Theta T_c^r\right)^M T_c^{100}$$

The operator term reads chronologically from left to right. The term in parenthesis is repeated *M* times.

Mathematica code

Repeated actions can be denoted by the operator power.

$$\left(\Theta \frac{T_c^r}{c}\right)^M T_c^{100}$$

The operator term reads chronologically from left to right. The term in parenthesis is repeated M times.

Mathematica code

Repeated actions can be denoted by the operator power.

$$\left(\Theta T_c^r\right)^M T_c^{100}$$

The operator term reads chronologically from left to right. The term in parenthesis is repeated M times.

Mathematica code

Repeated actions can be denoted by the operator power.

$$\left(\Theta T_c^r\right)^M T_c^{100}$$

The operator term reads chronologically from left to right. The term in parenthesis is repeated M times.

Mathematica code

Repeated actions can be denoted by the operator power.

$$\left(\Theta T_c^r\right)^M T_c^{100}$$

The operator term reads chronologically from left to right. The term in parenthesis is repeated M times.

Mathematica code

The European option offers the the choice between product A and B, after time to maturity M.

$$\Theta^{M} \stackrel{\text{max}}{\longleftarrow} \stackrel{A}{B} := \Theta^{M} \max(A, B)$$

```
Function[V_,
Nest[Theta,
IfThen[ A[V]>B[V], A[V], B[V]],
M]]
```

The European option offers the the choice between product A and B, after time to maturity M.

$$\Theta^{M} \stackrel{\text{max}}{\longleftarrow} A = \Theta^{M} \max(A, B)$$

```
Function[V_,
Nest[Theta,
IfThen[ A[V]>B[V], A[V], B[V]],
M]]
```

The European option offers the the choice between product A and B, after time to maturity M.

$$\Theta^M \stackrel{\text{max}}{\smile} \stackrel{A}{\longrightarrow} := \Theta^M \max(A, B)$$

```
Function[V_,
Nest[Theta,
IfThen[ A[V]>B[V], A[V], B[V]],
M]]
```

The European option offers the the choice between product A and B, after time to maturity M.

$$\Theta^{M} \stackrel{\text{max}}{\longleftarrow} A = \Theta^{M} \max(A, B)$$

```
Function[V_,
Nest[Theta,
IfThen[ A[V]>B[V], A[V], B[V]],
M]]
```

The European option offers the the choice between product A and B, after time to maturity M.

$$\Theta^M \stackrel{\text{Max}}{\swarrow} \frac{A}{B} := \Theta^M \max(A, B)$$

```
Function[V_,
Nest[Theta,
IfThen[ A[V]>B[V], A[V], B[V]],
M]]
```

The European option offers the the choice between product A and B, after time to maturity M.

$$\Theta^{M} \stackrel{\text{max}}{\longleftarrow} \stackrel{A}{B} := \Theta^{M} \max(A, B)$$

```
Function[V_,
Nest[Theta,
IfThen[ A[V]>B[V], A[V], B[V]],
M]]
```

With American option there is a perpetual right to choose X.

$$\lim_{\Delta t \to 0} \left(\Theta^{\Delta t} \underbrace{\stackrel{\text{max}}{\swarrow} X}_{\text{Id}} \right)^{\frac{M}{\Delta t}}$$

```
Function[V_,
Nest[
Function[f_,
Theta[ IfThen[X[V]>f, X[V], f]]],
V,M]]
```

With American option there is a perpetual right to choose X.

$$\lim_{\Delta t \to 0} \left(\Theta^{\Delta t} \underbrace{M^{\Delta t} X}_{ld} \right)^{\frac{M}{\Delta t}}$$

With American option there is a perpetual right to choose X.

$$\lim_{\Delta t \rightarrow 0} \; \left(\Theta^{\Delta t} \overset{\text{max}}{\underbrace{\hspace{1em} \; \; }} \overset{X}{\text{Id}} \; \right)^{\frac{M}{\Delta t}}$$

```
Function[V_,
Nest[
Function[f_,
Theta[ IfThen[X[V]>f, X[V], f]]],
V,M]]
```

With American option there is a perpetual right to choose X.

$$\lim_{\Delta t \to 0} \left(\Theta^{\Delta t} \overset{\text{max}}{\underbrace{\hspace{1em} X}} \overset{X}{\underbrace{\hspace{1em} M}} \right)^{\frac{M}{\Delta t}}$$

```
Function[V_,
Nest[
Function[f_,
Theta[ IfThen[X[V]>f, X[V], f]]],
V,M]]
```

With American option there is a perpetual right to choose X.

$$\lim_{\Delta t \to 0} \left(\Theta^{\Delta t} \underbrace{\begin{array}{c} M^{\Delta t} \\ Id \end{array}} \right)^{\frac{M}{\Delta t}}$$

```
Function[V_,
Nest[
Function[f_,
Theta[ IfThen[X[V]>f, X[V], f]]],
V,M]]
```

Transfer operator

The transfer or shift operator T transfers a deterministic amount onto variable x.

$$T_x^n f(x) := f(x+n)$$

This operation replaces every instance of x with x + n.

Mathematica code

 $T[index_, power_, V_] := V /. index-> index+power$

Process Operator

With Θ we can look one step into the future and evaluate the expectation of a function f under the future process state.

$$\Theta f(x) := \mathbb{E} \big(f(X_{t+1}) \big| X_t = x \big)$$

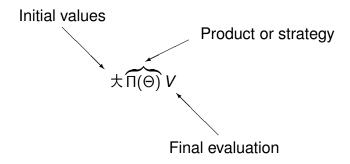
Example:

Different process scenarios can be combined linearly.

$$\Theta = \underbrace{T_{c}^{rc}}_{\text{pay interest}} \underbrace{ \overbrace{T_{c}^{-\frac{1}{2}S}}^{p} \underbrace{T_{S}^{+S}}_{\text{Vary } S}}_{\text{Vary } S}$$

Evaluation Sequence

We need to define initial process variables and determine the property of interest.



Evaluation Operator

The chronological operator order is maintained by a new operator \pm that applies initial values from the left hand side.

How to write:

Evaluation Of S

Starting with S = 100, what is S's expected value after one period?

$$\pm_{S=100} \Theta S = 200p + 50(1-p)$$

There exists a pseudo probability p, such that discounted S is a martingale.

$$\exists p: \quad \mathop{\hbox{\uparrow}}_{r=1/9} \Theta \ S \ = \ S(1+r)$$

The result is found easily:

$$p=\frac{11}{27}$$

Evaluation Of S

Starting with S = 100, what is S's expected value after one period?

$$\pm_{S=100} \Theta S = 200p + 50(1-p)$$

There exists a pseudo probability p, such that discounted S is a martingale.

$$\exists p: \ \ \mathop{\not\stackrel{}{\underset{r=1/9}{\overleftarrow{}}}} \Theta \ S \ = \ S(1+r)$$

The result is found easily:

$$p=\frac{11}{27}$$

Evaluation Of S

Starting with S = 100, what is S's expected value after one period?

$$\pm_{S=100} \Theta S = 200p + 50(1-p)$$

There exists a pseudo probability p, such that discounted S is a martingale.

$$\exists p: \ \ \mathop{\hbox{$\stackrel{\checkmark}{=}}}\ _{r=1/9} \Theta \ S \ = \ S(1+r)$$

The result is found easily:

$$p = \frac{11}{27}$$

Pricing A Product

Hedgeable price: 0€ Standard deviation: 73.7€

Pricing A Product

Hedgeable price: 0€
Standard deviation: 73.7€

Pricing A Product

Hedgeable price: 0€ Standard deviation: 73.7€

Five Operators To Rule Them All

List of operators

大 Initial values

An inactive time step

Transaction onto account *c*

Decision between option O_1 and O_2

Final valuation