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Pricing financial instruments more efficiently

This document describes how the evaluation of a slow function, e.g. Monte Carlo simulation,
can be considerably accelerated by using an interpolation scheme that minimizes the number of
calls to the original function.

Vision
In every scenario a pricing function has to be evaluated. Since this function is usually extremely
smooth it can be accurately approximated by interpolating only few evaluations.

Why Interpolation
A common method to approximate a pricing function facilitates the Greeks and is nothing else but a
Taylor expansion. Although this approximation is optimal close to the spot position the error increases
as risk factors become more extreme. However extreme risk factor scenarios are the crucial ones to
determine value at risk computation. An interpolation of the pricing function can be accurate on the
entire domain. 

Taylor series, as they are computed by the Greeks,
delta and gamma, approximate the function close
to the current spot position.

By interpolating certain evaluated points,
accuracy is far superior at the extreme points, as
they are crucial in extreme scenarios.

Curse of Dimension
A common problem of traditional interpolation scheme is the “curse of dimension”, which states, that
the amount of evaluation points required to yield a certain accuracy increases exponentially with the
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number of risk factors that determine the instrument's price. Consider for example a high dimensional
point set which is equidistantly spaced in each direction. With D dimensions and n samples per risk
factor one requires

n D

function evaluations.

Example:
Assume a swap option depending on 10 risk factors, e.g. several interest rates tenors and an fx rate.
Using only 2 points per dimension will require

210=1024
evaluations, while only reproducing linear effects.

Sparse grids
Sparse grids have been proved to be the optimal point set for the interpolation of high dimensional
smooth functions. The total number of function samples grows only slowly with the number of risk
factors and the number of samples per risk factor.
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Example:
Assuming again 10 dimensions and a grid of level 3 will require

13550=86
points and uses higher order polynomials to recover the function.

Combination method
The combination method is simple way of computing an interpolation on a sparse grid based on one
dimensional interpolation schemes.

Let Q(1)
l be a unidimensional interpolation rule of level l using nl basis functions k. 
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The high dimensional sparse grid interpolation can easily be described by a tensor product of univariate
interpolations.
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The traditional full grid, which requires far more points, is generated as
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Adaptivity
If the function has different sensitivities to the risk factors, or behaves differently for certain
combination of risk factors an adaptivity scheme can detect non smooth regions and uses more dense
points where they are required.

 

Time dependency
Since pricing functions are not only smooth with respect to their risk factors, but also change slowly in
time, the evaluated points can be reused to interpolate prices for consecutive days. This requires
persistent data storage between two runs.

Conclusion
The presented technique minimizes the number of required function calls with minimal adjustments to
the existing infrastructure. No pricing functions have to touched and no interfaces have to be rewritten.



We expect speed ups in the order of factor 5 to 10 and implementation to be completed on very
short time scale.
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